Lepskii Principle in Supervised Learning

Autor: Blanchard, Gilles, Mathé, Peter, Mücke, Nicole
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: In the setting of supervised learning using reproducing kernel methods, we propose a data-dependent regularization parameter selection rule that is adaptive to the unknown regularity of the target function and is optimal both for the least-square (prediction) error and for the reproducing kernel Hilbert space (reconstruction) norm error. It is based on a modified Lepskii balancing principle using a varying family of norms.
Databáze: arXiv