Autor: |
Blanchard, Gilles, Mathé, Peter, Mücke, Nicole |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In the setting of supervised learning using reproducing kernel methods, we propose a data-dependent regularization parameter selection rule that is adaptive to the unknown regularity of the target function and is optimal both for the least-square (prediction) error and for the reproducing kernel Hilbert space (reconstruction) norm error. It is based on a modified Lepskii balancing principle using a varying family of norms. |
Databáze: |
arXiv |
Externí odkaz: |
|