The Role of Machine Learning in the Next Decade of Cosmology
Autor: | Ntampaka, Michelle, Avestruz, Camille, Boada, Steven, Caldeira, Joao, Cisewski-Kehe, Jessi, Di Stefano, Rosanne, Dvorkin, Cora, Evrard, August E., Farahi, Arya, Finkbeiner, Doug, Genel, Shy, Goodman, Alyssa, Goulding, Andy, Ho, Shirley, Kosowsky, Arthur, La Plante, Paul, Lanusse, Francois, Lochner, Michelle, Mandelbaum, Rachel, Nagai, Daisuke, Newman, Jeffrey A., Nord, Brian, Peek, J. E. G., Peel, Austin, Poczos, Barnabas, Rau, Markus Michael, Siemiginowska, Aneta, Sutherland, Danica J., Trac, Hy, Wandelt, Benjamin |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In recent years, machine learning (ML) methods have remarkably improved how cosmologists can interpret data. The next decade will bring new opportunities for data-driven cosmological discovery, but will also present new challenges for adopting ML methodologies and understanding the results. ML could transform our field, but this transformation will require the astronomy community to both foster and promote interdisciplinary research endeavors. Comment: Submitted to the Astro2020 call for science white papers |
Databáze: | arXiv |
Externí odkaz: |