Autor: |
Meier, Men-Andrin, Ross, Zachary E., Ramachandran, Anshul, Balakrishna, Ashwin, Nair, Suraj, Kundzicz, Peter, Li, Zefeng, Andrews, Jennifer, Hauksson, Egill, Yue, Yisong |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Journal of Geophysical Research: Solid Earth, 124 (2019) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1029/2018JB016661 |
Popis: |
In Earthquake Early Warning (EEW), every sufficiently impulsive signal is potentially the first evidence for an unfolding large earthquake. More often than not, however, impulsive signals are mere nuisance signals. One of the most fundamental - and difficult - tasks in EEW is to rapidly and reliably discriminate real local earthquake signals from all other signals. This discrimination is necessarily based on very little information, typically a few seconds worth of seismic waveforms from a small number of stations. As a result, current EEW systems struggle to avoid discrimination errors, and suffer from false and missed alerts. In this study we show how modern machine learning classifiers can strongly improve real-time signal/noise discrimination. We develop and compare a series of non-linear classifiers with variable architecture depths, including fully connected, convolutional (CNN) and recurrent neural networks, and a model that combines a generative adversarial network with a random forest (GAN+RF). We train all classifiers on the same data set, which includes 374k local earthquake records (M3.0-9.1) and 946k impulsive noise signals. We find that all classifiers outperform existing simple linear classifiers, and that complex models trained directly on the raw signals yield the greatest degree of improvement. Using 3s long waveform snippets, the CNN and the GAN+RF classifiers both reach 99.5% precision and 99.3% recall on an independent validation data set. Most misclassifications stem from impulsive teleseismic records, and from incorrectly labeled records in the data set. Our results suggest that machine learning classifiers can strongly improve the reliability and speed of EEW alerts. |
Databáze: |
arXiv |
Externí odkaz: |
|