Periodic orbits of discrete and continuous dynamical systems via Poincar\'{e}-Miranda theorem

Autor: Gasull, Armengol, Mañosa, Víctor
Rok vydání: 2018
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems -series B, 25 (2) (2020), 651-670
Druh dokumentu: Working Paper
DOI: 10.3934/dcdsb.2019259
Popis: We present a systematic methodology to determine and locate analytically isolated periodic points of discrete and continuous dynamical systems with algebraic nature. We apply this method to a wide range of examples, including a one-parameter family of counterexamples to the discrete Markus-Yamabe conjecture (La Salle conjecture); the study of the low periods of a Lotka-Volterra-type map; the existence of three limit cycles for a piece-wise linear planar vector field; a new counterexample of Kouchnirenko's conjecture; and an alternative proof of the existence of a class of symmetric central configuration of the $(1+4)$-body problem.
Comment: 26 pages, 7 figures
Databáze: arXiv