Global Solutions of a Surface Quasi-Geostrophic Front Equation
Autor: | Hunter, John K., Shu, Jingyang, Zhang, Qingtian |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Pure Appl. Analysis 3 (2021) 403-472 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/paa.2021.3.403 |
Popis: | We consider a nonlinear, spatially-nonlocal initial value problem in one space dimension on $\mathbb{R}$ that describes the motion of surface quasi-geostrophic (SQG) fronts. We prove that the initial value problem has a unique local smooth solution under a convergence condition on the multilinear expansion of the nonlinear term in the equation, and, for sufficiently smooth and small initial data, we prove that the solution is global. Comment: 55 pages |
Databáze: | arXiv |
Externí odkaz: |