Global Solutions of a Surface Quasi-Geostrophic Front Equation

Autor: Hunter, John K., Shu, Jingyang, Zhang, Qingtian
Rok vydání: 2018
Předmět:
Zdroj: Pure Appl. Analysis 3 (2021) 403-472
Druh dokumentu: Working Paper
DOI: 10.2140/paa.2021.3.403
Popis: We consider a nonlinear, spatially-nonlocal initial value problem in one space dimension on $\mathbb{R}$ that describes the motion of surface quasi-geostrophic (SQG) fronts. We prove that the initial value problem has a unique local smooth solution under a convergence condition on the multilinear expansion of the nonlinear term in the equation, and, for sufficiently smooth and small initial data, we prove that the solution is global.
Comment: 55 pages
Databáze: arXiv