Large Positive and Negative Values of Hardy's $Z$-Function

Autor: Mahatab, Kamalakshya
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: Let $Z(t):=\zeta\left(\frac{1}{2}+it\right)\chi^{-\frac{1}{2}}\left(\frac{1}{2}+it\right)$ be Hardy's function, where the Riemann zeta function $\zeta(s)$ has the functional equation $\zeta(s)=\chi(s)\zeta(1-s)$. We prove that for any $\epsilon>0$, \begin{align*} &\quad\max_{T^{3/4}\leq t\leq T} Z(t) \gg \exp\left(\left(\frac{1}{2}-\epsilon\right)\sqrt{\frac{\log T\log\log\log T}{\log\log T}}\right)\\ \text{ and }& \max_{T^{3/4}\leq t\leq T}- Z(t) \gg \exp\left(\left(\frac{1}{2}-\epsilon\right)\sqrt{\frac{\log T\log\log\log T}{\log\log T}}\right). \end{align*}
Comment: 8 pages, some minor changes, To appear in Proceedings of the American Mathematical Society
Databáze: arXiv