Dual of Hardy-amalgam spaces and norms inequalities
Autor: | Ablé, Zobo Vincent de Paul, Feuto, Justin |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We characterize the dual spaces of the generalized Hardy spaces defined by replacing Lebesgue quasi-norms by Wiener amalgam ones. In these generalized Hardy spaces, we prove that some classical linear operators such as Calder\'on-Zygmund, convolution and Riesz potential operators are bounded. Comment: 38 pages. We have corrected some typos and modified the proof of Lemma 4.21. To appear in Analysis Mathematica |
Databáze: | arXiv |
Externí odkaz: |