Komlos Properties in Banach Lattices
Autor: | Emelyanov, E. Y., Ozcan, N. Erkursun, Gorokhova, S. G. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Several Koml\'os like properties in Banach lattices are investigated. We prove that $C(K)$ fails the $oo$-pre-Koml\'os property, assuming that the compact Hausdorff space $K$ has a nonempty separable open subset $U$ without isolated points such that every $u\in U$ has countable neighborhood base. We prove also that for any infinite dimensional Banach lattice $E$ there is an unbounded convex $uo$-pre-Koml\'os set $C\subseteq E_+$ which is not $uo$-Koml\'os. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |