Optical Wireless Information Transfer with Nonlinear Micromechanical Resonators
Autor: | Boales, Joseph A, Mateen, Farrukh, Mohanty, Pritiraj |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Microsystems & Nanoengineering 3, 17026 (2017) |
Druh dokumentu: | Working Paper |
DOI: | 10.1038/micronano.2017.26 |
Popis: | Wireless transfer of information is the basis of modern communication. It includes cellular, WiFi, Bluetooth and GPS systems, all of which use electromagnetic radio waves with frequencies ranging from typically 100 MHz to a few GHz. However, several long-standing challenges with standard radio-wave wireless transmission still exist, including keeping secure transmission of data from potential compromise. Here, we demonstrate wireless information transfer using a line-of-sight optical architecture with a micromechanical element. In this fundamentally new approach, a laser beam encoded with information impinges on a nonlinear micromechanical resonator located a distance from the laser. The force generated by the radiation pressure of the laser light on the nonlinear micromechanical resonator produces a sideband modulation signal, which carries the precise information encoded in the subtle changes in the radiation pressure. Using this, we demonstrate data and image transfer with one hundred percent fidelity with a single 96 micron by 270 micron silicon resonator element in an optical frequency band. This mechanical approach relies only on the momentum of the incident photons and is therefore able to use any portion of the optical frequency banda band that is 10,000 times wider than the radio frequency band. Our line-of-sight architecture using highly scalable micromechanical resonators offers new possibilities in wireless communication. Due to their small size, these resonators can be easily arrayed while maintaining a small form factor to provide redundancy and parallelism. Comment: 6 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |