The s-multiplicity function of 2x2-determinantal rings

Autor: Miller, Lance Edward, Taylor, William D.
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: This article generalizes joint work of the first author and I. Swanson to the $s$-multiplicity recently introduced by the second author. For $k$ a field and $X = [ x_{i,j}]$ a $m \times n$-matrix of variables, we utilize Gr\"obner bases to give a closed form the length $\lambda( k[X] / (I_2(X) + \mathfrak{m}^{ \lceil sq \rceil} + \mathfrak{m}^{[q]} ))$ where $s \in \mathbf{Z}[p^{-1}]$, $q$ is a sufficiently large power of $p$, and $\mathfrak{m}$ is the homogeneous maximal ideal of $k[X]$. This shows this length is always eventually a {\it polynomial} function of $q$ for all $s$.
Comment: 9 pages, Errors fixed
Databáze: arXiv