Generalized Log-sine integrals and Bell polynomials

Autor: Orr, Derek
Rok vydání: 2017
Předmět:
Zdroj: J. Comp. Appl. Math. 347 (2019) 330-342
Druh dokumentu: Working Paper
DOI: 10.1016/j.cam.2018.08.026
Popis: In this paper, we investigate the integral of $x^n\log^m(\sin(x))$ for natural numbers $m$ and $n$. In doing so, we recover some well-known results and remark on some relations to the log-sine integral $\operatorname{Ls}_{n+m+1}^{(n)}(\theta)$. Later, we use properties of Bell polynomials to find a closed expression for the derivative of the central binomial and shifted central binomial coefficients in terms of polygamma functions and harmonic numbers.
Comment: 19 pages
Databáze: arXiv