Generalized Log-sine integrals and Bell polynomials
Autor: | Orr, Derek |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | J. Comp. Appl. Math. 347 (2019) 330-342 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.cam.2018.08.026 |
Popis: | In this paper, we investigate the integral of $x^n\log^m(\sin(x))$ for natural numbers $m$ and $n$. In doing so, we recover some well-known results and remark on some relations to the log-sine integral $\operatorname{Ls}_{n+m+1}^{(n)}(\theta)$. Later, we use properties of Bell polynomials to find a closed expression for the derivative of the central binomial and shifted central binomial coefficients in terms of polygamma functions and harmonic numbers. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |