Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity
Autor: | Ebert, Marcelo Rempel, Reissig, Michael |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we study the Cauchy problem for semi-linear de Sitter models with power non-linearity. The model of interest is \[ \phi_{tt} - e^{-2t} \Delta \phi + n\phi_t+m^2\phi=|\phi|^p,\quad (\phi(0,x),\phi_t(0,x))=(f(x),g(x)),\] where $m^2$ is a non-negative constant. We study the global (in time) existence of small data solutions. In particular, we show the interplay between the power $p$, admissible data spaces and admissible spaces of solutions (in weak sense, in sense of energy solutions or in classical sense). Comment: 32 pages |
Databáze: | arXiv |
Externí odkaz: |