Popis: |
Let S $\subseteq$ N be a numerical semigroup with multiplicity m = min(S \ {0}), conductor c = max(N \ S) + 1 and minimally generated by e elements. Let L be the set of elements of S which are smaller than c. Wilf conjectured in 1978 that |L| is bounded below by c/e. We show here that if c $\le$ 3m, then S satisfies Wilf's conjecture. Combined with a recent result of Zhai, this implies that the conjecture is asymptotically true as the genus g(S) = |N \ S| goes to infinity. One main tool in this paper is a classical theorem of Macaulay on the growth of Hilbert functions of standard graded algebras. |