Extension operators for smooth functions on compact subsets of the reals
Autor: | Frerick, Leonhard, Jorda, Enrique, Wengenroth, Jochen |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce sufficient as well as necessary conditions for a compact set $K$ such that there is a continuous linear extension operator from the space of restrictions $C^\infty(K)=\lbrace F|_K: F\in C^\infty(\mathbb R)\rbrace$ to $C^\infty(\mathbb R)$. This allows us to deal with examples of the form $K=\lbrace a_n:n\in\mathbb N\rbrace \cup \lbrace 0\rbrace$ for $a_n\to 0$ previously considered by Fefferman and Ricci as well as Vogt. Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |