On Topologies on the Group $(\Z_p)^{\N}$
Autor: | Babenko, I. K., Bogatyi, S. A. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is proved that, on any Abelian group of infinite cardinality ${\bf m}$, there exist precisely $2^{2^{\bf m}}$ nonequivalent bounded Hausdorff group topologies. Under the continuum hypothesis, the number of nonequivalent compact and locally compact Hausdorff group topologies on the group $(\Z_p)^{\N}$ is determined. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |