On Topologies on the Group $(\Z_p)^{\N}$

Autor: Babenko, I. K., Bogatyi, S. A.
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: It is proved that, on any Abelian group of infinite cardinality ${\bf m}$, there exist precisely $2^{2^{\bf m}}$ nonequivalent bounded Hausdorff group topologies. Under the continuum hypothesis, the number of nonequivalent compact and locally compact Hausdorff group topologies on the group $(\Z_p)^{\N}$ is determined.
Comment: 10 pages
Databáze: arXiv