A local and renormalizable framework for the gauge-invariant operator $A^2_{\min}$ in Euclidean Yang-Mills theories in linear covariant gauges
Autor: | Capri, M. A. L., Fiorentini, D., Guimaraes, M. S., Mintz, B. W., Palhares, L. F., Sorella, S. P. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Phys. Rev. D 94, 065009 (2016) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevD.94.065009 |
Popis: | We address the issue of the renormalizability of the gauge-invariant non-local dimension-two operator $A^2_{\rm min}$, whose minimization is defined along the gauge orbit. Despite its non-local character, we show that the operator $A^2_{\rm min}$ can be cast in local form through the introduction of an auxiliary Stueckelberg field. The localization procedure gives rise to an unconventional kind of Stueckelberg-type action which turns out to be renormalizable to all orders of perturbation theory. In particular, as a consequence of its gauge invariance, the anomalous dimension of the operator $A^2_{\rm min}$ turns out to be independent from the gauge parameter $\alpha$ entering the gauge-fixing condition, being thus given by the anomalous dimension of the operator $A^2$ in the Landau gauge. Comment: 35 pages; v2: ref. added |
Databáze: | arXiv |
Externí odkaz: |