Universum Learning for SVM Regression
Autor: | Dhar, Sauptik, Cherkassky, Vladimir |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper extends the idea of Universum learning [18, 19] to regression problems. We propose new Universum-SVM formulation for regression problems that incorporates a priori knowledge in the form of additional data samples. These additional data samples or Universum belong to the same application domain as the training samples, but they follow a different distribution. Several empirical comparisons are presented to illustrate the utility of the proposed approach. Comment: 10 pages,11 figures, Thesis: http://conservancy.umn.edu/handle/11299/162636 |
Databáze: | arXiv |
Externí odkaz: |