Conformal Spectral Stability Estimates for the Neumann Laplacian

Autor: Burenkov, V. I., Gol'dshtein, V., Ukhlov, A.
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: We study the eigenvalue problem for the Neumann-Laplace operator in conformal regular planar domains $\Omega\subset\mathbb{C}$. Conformal regular domains support the Poincar\'e inequality and this allows us to estimate the variation of the eigenvalues of the Neumann Laplacian upon domain perturbation via energy type integrals. Boundaries of such domains can have any Hausdorff dimension between one and two.
Comment: 15 pages. arXiv admin note: substantial text overlap with arXiv:1406.4340
Databáze: arXiv