Least-bias state estimation with incomplete unbiased measurements
Autor: | Rehacek, J., Hradil, Z., Teo, Y. S., Sanchez-Soto, L. L., Ng, H. K., Chai, J. H., Englert, B. -G. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Phys. Rev. A 92, 052303 (2015) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevA.92.052303 |
Popis: | Measuring incomplete sets of mutually unbiased bases constitutes a sensible approach to the tomography of high-dimensional quantum systems. The unbiased nature of these bases optimizes the uncertainty hypervolume. However, imposing unbiasedness on the probabilities for the unmeasured bases does not generally yield the estimator with the largest von Neumann entropy, a popular figure of merit in this context. Furthermore, this imposition typically leads to mock density matrices that are not even positive definite. This provides a strong argument against perfunctory applications of linear estimation strategies. We propose to use instead the physical state estimators that maximize the Shannon entropy of the unmeasured outcomes, which quantifies our lack of knowledge fittingly and gives physically meaningful statistical predictions. Comment: 13 pages, 5 color figures. Comments welcome |
Databáze: | arXiv |
Externí odkaz: |