New a priori estimates for semistable solutions of semilinear elliptic equations
Autor: | Aghajani, Asadollah |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the semilinear elliptic equation $-L u = f(u)$ in a general smooth bounded domain $\Omega \subset R^{n}$ with zero Dirichlet boundary condition, where $L$ is a uniformly elliptic operator and $f$ is a $C^{2}$ positive, nondecreasing and convex function in $[0,\infty)$ such that $\frac{f(t)}{t}\rightarrow\infty$ as $t\rightarrow\infty$. We prove that if $u$ is a positive semistable solution then for every $0\leq\beta<1$ we have $$f(u)\int_{0}^{u}f(t)f"(t)~e^{2\beta\int_{0}^{t}\sqrt{\frac{f"(s)}{f(s)}}ds}~dt\in L^{1}(\Omega),$$ by a constant independent of $u$. As we shall see, a large number of results in the literature concerning a priori bounds are immediate consequences of this estimate. In particular, among other results, we establish a priori $L^{\infty}$ bound in dimensions $n\leq 9$, under the extra assumption that $\limsup_{t\rightarrow\infty} \frac{f(t)f"(t)}{f'(t)^{2}} < \frac{2}{9-2\sqrt{14}}\cong 1.318$. Also, we establish a priori $L^{\infty}$ bound when $n\leq 5$ under the very weak assumption that, for some $\epsilon>0$, $\liminf_{t\rightarrow\infty} \frac{(tf(t))^{2-\epsilon}}{f'(t)} > 0$ or $\liminf_{t\rightarrow\infty} \frac{t^{2}f(t)f"(t)}{f'(t)^{\frac{3}{2}+\epsilon}} > 0$. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |