Structures of Spherical Viral Capsids as Quasicrystalline Tilings
Autor: | Konevtsova, O. V., Lorman, V. L., Rochal, S. B. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Physics of the Solid State, 2015, Vol. 57, No.4, pp. 810-814 |
Druh dokumentu: | Working Paper |
DOI: | 10.1134/S1063783415040125 |
Popis: | Spherical viral shells with icosahedral symmetry have been considered as quasicrystalline tilings. Similarly to known Caspar-Klug quasi-equivalence theory, the presented approach also minimizes the number of conformations necessary for the protein molecule bonding with its neighbors in the shell, but is based on different geometrical principles. It is assumed that protein molecule centers are located at vertices of tiles with identical edges, and the number of different tile types is minimal. Idealized coordinates of nonequivalent by symmetry protein positions in six various capsid types are obtained. The approach describes in a uniform way both the structures satisfying the well-known Caspar-Klug geometrical model and the structures contradicting this model. Comment: 8 pages, 2 figures; This version was published in Physics of the Solid State, 2015, Vol. 57, No.4, pp. 810-814 |
Databáze: | arXiv |
Externí odkaz: |