Popis: |
The closest pair problem (CPP) is one of the well studied and fundamental problems in computing. Given a set of points in a metric space, the problem is to identify the pair of closest points. Another closely related problem is the fixed radius nearest neighbors problem (FRNNP). Given a set of points and a radius $R$, the problem is, for every input point $p$, to identify all the other input points that are within a distance of $R$ from $p$. A naive deterministic algorithm can solve these problems in quadratic time. CPP as well as FRNNP play a vital role in computational biology, computational finance, share market analysis, weather prediction, entomology, electro cardiograph, N-body simulations, molecular simulations, etc. As a result, any improvements made in solving CPP and FRNNP will have immediate implications for the solution of numerous problems in these domains. We live in an era of big data and processing these data take large amounts of time. Speeding up data processing algorithms is thus much more essential now than ever before. In this paper we present algorithms for CPP and FRNNP that improve (in theory and/or practice) the best-known algorithms reported in the literature for CPP and FRNNP. These algorithms also improve the best-known algorithms for related applications including time series motif mining and the two locus problem in Genome Wide Association Studies (GWAS). |