A vanishing theorem for the $p$-local homology of Coxeter groups
Autor: | Akita, Toshiyuki |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/blms/bdw063 |
Popis: | Given an odd prime number $p$ and a Coxeter group $W$ such that the order of the product $st$ is prime to $p$ for every Coxeter generators $s,t$ of $W$, we prove that the $p$-local homology groups $H_k(W,\mathbb{Z}_{(p)})$ vanish for $1\leq k\leq 2(p-2)$. This generalize a known vanishing result for symmetric groups due to Minoru Nakaoka. Comment: v2: minor changes (including the title). To appear in Bulletin of the London Mathematical Society |
Databáze: | arXiv |
Externí odkaz: |