Autor: |
Kokabifar, E., Loghmani, G. B., Psarrakos, P. J., Karbassi, S. M. |
Rok vydání: |
2014 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Consider an $n\times n$ matrix polynomial $P(\lambda)$ and a set $\Sigma$ consisting of $k \le n$ distinct complex numbers. In this paper, a (weighted) spectral norm distance from $P(\lambda)$ to the matrix polynomials whose spectra include the specified set $\Sigma$, is defined and studied. An upper and a lower bounds for this distance are obtained, and an optimal perturbation of $P(\lambda)$ associated to the upper bound is constructed. Numerical examples are given to illustrate the efficiency of the proposed bounds. |
Databáze: |
arXiv |
Externí odkaz: |
|