Coordinate shadows of semi-definite and Euclidean distance matrices
Autor: | Drusvyatskiy, D., Pataki, G., Wolkowicz, H. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We classify when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. In particular, we show that under a chordality assumption, the "minimal cones" of these problems admit combinatorial characterizations. As a byproduct, we record a striking relationship between the complexity of the general facial reduction algorithm (singularity degree) and facial exposedness of conic images under a linear mapping. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |