Freely quasiconformal maps and distance ratio metric
Autor: | Li, Y., Ponnusamy, S., Vuorinen, M. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | J. Aust. Math. Soc. 97 (2014) 383-390 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/S1446788714000329 |
Popis: | Suppose that $E$ and $E'$ denote real Banach spaces with dimension at least $2$ and that $D\subset E$ and $D'\subset E'$ are domains. In this paper, we establish, in terms of the $j_D$ metric, a necessary and sufficient condition for the homeomorphism $f: E \to E'$ to be FQC. Moreover, we give, in terms of the $j_D$ metric, a sufficient condition for the homeomorphism $f: D\to D'$ to be FQC. On the other hand, we show that this condition is not necessary. Comment: 10 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1110.6269 |
Databáze: | arXiv |
Externí odkaz: |