Calculus, continuity and global wave-front properties for Fourier integral operators on $\mathbf{R}^d$
Autor: | Coriasco, S., Johansson, K., Toft, J. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | J. Fourier Anal. Appl. 22, 2 (2016), 285-333 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00041-015-9422-1 |
Popis: | We illustrate the composition properties for an extended family of SG Fourier integral operators. We prove continuity results for operators in this class with respect to $L^2$ and weighted modulation spaces, and discuss continuity on $\mathscr{S}$, $\mathscr{S}^\prime$ and on weighted Sobolev spaces. We study mapping properties of global wave-front sets under the action of these Fourier integral operators. We extend classical results to more general situations. For example, there are no requirements of homogeneity for the phase functions. Finally, we apply our results to the study of of the propagation of singularities, in the context of modulation spaces, for the solutions to the Cauchy problems for the corresponding linear hyperbolic operators. Comment: 42 pages. General reorganization, mistakes and typos corrections |
Databáze: | arXiv |
Externí odkaz: |