Synchronisation and liquid crystalline order in soft active fluids
Autor: | Leoni, M., Liverpool, T. B. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevLett.112.148104 |
Popis: | We introduce a phenomenological theory for a new class of soft active fluids, with the ability to synchronise. Our theoretical framework describes the macroscopic behaviour of a collection of interacting anisotropic elements with cyclic internal dynamics and a periodic phase variable. This system (i) can spontaneously undergo a transition to a state with macroscopic orientational order, with the elements aligned: a liquid crystal, (ii) attain another broken symmetry state characterised by synchronisation of their phase variables or (iii) a combination of both types of order. We derive the equations describing a spatially homogeneous system and also study the hydrodynamic fluctuations of the soft modes in some of the ordered states. We find that synchronisation can promote the transition to a state with orientational order; and vice-versa. Finally, we provide an explicit microscopic realisation: a suspension of micro-swimmers driven by cyclic strokes. Comment: 5 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |