Spectral properties of the M\'{o}bius function and a random M\'{o}bius model
Autor: | Abdalaoui, E. H. el, Disertori, M. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Assuming Sarnak conjecture is true for any singular dynamical process, we prove that the spectral measure of the M\"{o}bius function is equivalent to Lebesgue measure. Conversely, under Elliott conjecture, we establish that the M\"{o}bius function is orthogonal to any uniquely ergodic dynamical system with singular spectrum. Furthermore, using Mirsky Theorem, we find a new simple proof of Cellarosi-Sinai Theorem on the orthogonality of the square of the M\"{o}bius function with respect to any weakly mixing dynamical system. Finally, we establish Sarnak conjecture for a particular random model. Comment: 24 pages, submitted for publication |
Databáze: | arXiv |
Externí odkaz: |