Spectral Duality Between Heisenberg Chain and Gaudin Model
Autor: | Mironov, A., Morozov, A., Runov, B., Zenkevich, Y., Zotov, A. |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Letters in Mathematical Physics: Volume 103, Issue 3 (2013), Page 299-329 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11005-012-0595-0 |
Popis: | In our recent paper we described relationships between integrable systems inspired by the AGT conjecture. On the gauge theory side an integrable spin chain naturally emerges while on the conformal field theory side one obtains some special reduced Gaudin model. Two types of integrable systems were shown to be related by the spectral duality. In this paper we extend the spectral duality to the case of higher spin chains. It is proved that the N-site GL(k) Heisenberg chain is dual to the special reduced k+2-points gl(N) Gaudin model. Moreover, we construct an explicit Poisson map between the models at the classical level by performing the Dirac reduction procedure and applying the AHH duality transformation. Comment: 36 pages |
Databáze: | arXiv |
Externí odkaz: |