Molecular Gas in Infrared Ultraluminous QSO Hosts

Autor: Xia, X. Y., Gao, Y., Hao, C. -N., Tan, Q. H., Mao, S., Omont, A., Flaquer, B. O., Leon, S., Cox, P.
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/0004-637X/750/2/92
Popis: We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30m telescope. The cold molecular gas reservoir in these objects is in a range of 0.2--2.1$\times 10^{10}M_\odot$ (adopting a CO-to-${\rm H_2}$ conversion factor $\alpha_{\rm CO}=0.8 M_\odot {\rm (K km s^{-1} pc^2)^{-1}}$). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency ($L_{\rm FIR}/L^\prime_{\rm CO}$) and the CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO detected QSOs reveals a tight correlation between L$_{\rm FIR}$ and $L^\prime_{\rm CO(1-0)}$ for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by {\it Spitzer}. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on $\sim$ kpc scale and the central black hole accretion process on much smaller scales.
Comment: 30 pages, 9 figures, accepted for publication in The Astrophysical Journal
Databáze: arXiv