Exponential speed of mixing for skew-products with singularities

Autor: Markarian, R., Pacifico, M. J., Vieitez, J.
Rok vydání: 2012
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/0951-7715/26/1/269
Popis: Let $f: [0,1]\times [0,1] \setminus {1/2} \to [0,1]\times [0,1]$ be the $C^\infty$ endomorphism given by $$f(x,y)=(2x- [2x], y+ c/|x-1/2|- [y+ c/|x-1/2|]),$$ where $c$ is a positive real number. We prove that $f$ is topologically mixing and if $c>1/4$ then $f$ is mixing with respect to Lebesgue measure. Furthermore we prove that the speed of mixing is exponential.
Comment: 23 pages, 3 figures
Databáze: arXiv