Duality for Koszul Homology over Gorenstein Rings
Autor: | Miller, Claudia, Rahmati, Hamidreza, Striuli, Janet |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study Koszul homology over Gorenstein rings. If an ideal is strongly Cohen-Macaulay, the Koszul homology algebra satisfies Poincar\'e duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen-Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth. |
Databáze: | arXiv |
Externí odkaz: |