Heat operator with pure soliton potential: properties of Jost and dual Jost solutions
Autor: | Boiti, M., Pempinelli, F., Pogrebkov, A. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1063/1.3621715 |
Popis: | Properties of Jost and dual Jost solutions of the heat equation, $\Phi(x,k)$ and $\Psi(x,k)$, in the case of a pure solitonic potential are studied in detail. We describe their analytical properties on the spectral parameter $k$ and their asymptotic behavior on the $x$-plane and we show that the values of $e^{-qx}\Phi(x,k)$ and the residua of $e^{qx}\Psi(x,k)$ at special discrete values of $k$ are bounded functions of $x$ in a polygonal region of the $q$-plane. Correspondingly, we deduce that the extended version $L(q)$ of the heat operator with a pure solitonic potential has left and right annihilators for $q$ belonging to these polygonal regions. Comment: 26 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |