Johnson homomorphisms and actions of higher-rank lattices on right-angled Artin groups
Autor: | Wade, Richard D. |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | J. London Math. Soc. (2013) 88 (3): 860-882 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/jlms/jdt044 |
Popis: | Let G be a real semisimple Lie group with no compact factors and finite centre, and let $\Lambda$ be a lattice in G. Suppose that there exists a homomorphism from $\Lambda$ to the outer automorphism group of a right-angled Artin group $A_\Gamma$ with infinite image. We give an upper bound to the real rank of G that is determined by the structure of cliques in $\Gamma$. An essential tool is the Andreadakis-Johnson filtration of the Torelli subgroup $\mathcal{T}}(A_\Gamma)$ of $Aut(A_\Gamma)$. We answer a question of Day relating to the abelianisation of $\mathcal{T}}(A_\Gamma)$, and show that $\mathcal{T}}(A_\Gamma)$ and its image in $Out(A_\Gamma)$ are residually torsion-free nilpotent. Comment: 21 pages, 1 figure. Final draft. To appear in the Journal of the London Mathematical Society |
Databáze: | arXiv |
Externí odkaz: |