Self-consistent nonspherical isothermal halos embedding zero-thickness disks

Autor: Amorisco, N. C., Bertin, G.
Rok vydání: 2010
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1051/0004-6361/201014387
Popis: Disk-halo decompositions of galaxy rotation curves are generally performed in a parametric way. We construct self-consistent models of nonspherical isothermal halos embedding a zero-thickness disk, by assuming that the halo distribution function is a Maxwellian. The method developed here can be used to study other physically-based choices for the halo distribution function and the case of a disk accompanied by a bulge. In a preliminary investigation we note the existence of a fine tuning between the scalelengths R_{\Omega} and h, respectively characterizing the rise of the rotation curve and the luminosity profile of the disk, which surprisingly applies to both high surface brightness and low surface brightness galaxies. This empirical correlation identifies a much stronger conspiracy than the one required by the smoothness and flatness of the rotation curve (disk-halo conspiracy). The self-consistent models are characterized by smooth and flat rotation curves for very different disk-to-halo mass ratios, hence suggesting that conspiracy is not as dramatic as often imagined. For a typical rotation curve, with asymptotically flat rotation curve at V_{\infty} (the precise value of which can also be treated as a free parameter), and a typical density profile of the disk, self-consistent models are characterized by two dimensionless parameters, which correspond to the dimensional scales (the disk mass-to-light ratio M/L and the halo central density) of standard disk-halo decompositions. We show that if the rotation curve is decomposed by means of our self-consistent models, the disk-halo degeneracy is removed and typical rotation curves are fitted by models that are below the maximum-disk prescription. Similar results are obtained from a study of NGC 3198. Finally, we quantify the flattening of the spheroidal halo, which is significant, especially on the scale of the visible disk.
Comment: accepted for publication in A&A
Databáze: arXiv