Opdam's hypergeometric functions: product formula and convolution structure in dimension 1
Autor: | Anker, Jean-Philippe, Ayadi, Fatma, Sifi, Mohamed |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $G_{\lambda}^{(\alpha,\beta)}$ be the eigenfunctions of the Dunkl-Cherednik operator $T^{(\alpha,\beta)}$ on $\mathbb{R}$. In this paper we express the product $G_{\lambda}^{(\alpha,\beta)}(x)G_{\lambda}^{(\alpha,\beta)}(y)$ as an integral in terms of $G_{\lambda}^{(\alpha,\beta)}(z)$ with an explicit kernel. In general this kernel is not positive. Furthermore, by taking the so-called rational limit, we recover the product formula of M. R\"osler for the Dunkl kernel. We then define and study a convolution structure associated to $G_{\lambda}^{(\alpha,\beta)}$. Comment: Adv. Pure Appl. Math. (2011) 27 pp |
Databáze: | arXiv |
Externí odkaz: |