A refined modular approach to the Diophantine equation $x^2+y^{2n}=z^3$
Autor: | Dahmen, Sander R. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $n$ be a positive integer and consider the Diophantine equation of generalized Fermat type $x^2+y^{2n}=z^3$ in nonzero coprime integer unknowns $x,y,z$. Using methods of modular forms and Galois representations for approaching Diophantine equations, we show that for $n \in \{5, 31\}$ there are no solutions to this equation. Combining this with previously known results, this allows a complete description of all solutions to the Diophantine equation above for $n \leq 10^7$. Finally, we show that there are also no solutions for $n\equiv -1 \pmod{6}$. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: |