Lipid Domain Order and the Algebra of Morphology
Autor: | Ursell, Tristan, Phillips, Rob |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Lipid membranes regulate the flow of materials and information between cells and their organelles. Further, lipid composition and morphology can play a key role in regulating a variety of biological processes. For example, viral uptake, plasma membrane tension regulation, and the formation of caveolae all require the creation and control of groups of lipids that adopt specific morphologies. In this paper, we use a simplified model mixture of lipids and cholesterol to examine the interplay between lipid phase-separation and bilayer morphology. We observe and theoretically analyze three main features of phase-separated giant unilamellar vesicles. First, by tracking the motion of `dimpled' domains, we measure repulsive, elastic interactions that create short--range translational and orientational order, leading to a stable distribution of domain sizes, and hence maintaining lateral heterogeneity on relatively short length scales and long time scales. Second, we examine the transition to `budded' domain morphologies, showing that the transition is size-selective, and has two kinetic regimes, as revealed by a calculated phase diagram. Finally, using observations of the interactions between dimpled and budded domains, we build a theoretical framework with an elastic model that maps the free energies and allowed transitions in domain morphology upon coalescence, to serve as an interpretive tool for understanding the algebra of domain morphology. In all three cases, the two major factors that regulate domain morphology and morphological transitions are the domain size and membrane tension. Comment: 7 pages of text, 10 figures, 15 pages total |
Databáze: | arXiv |
Externí odkaz: |