Volume entropy of Hilbert Geometries

Autor: Berck, Gautier, Bernig, Andreas, Vernicos, Constantin
Rok vydání: 2008
Předmět:
Zdroj: Pacific J. Math., 245 (2010), 201-225
Druh dokumentu: Working Paper
Popis: It is shown that the volume entropy of a Hilbert geometry associated to an $n$-dimensional convex body of class $C^{1,1}$ equals $n-1$. To achieve this result, a new projective invariant of convex bodies, similar to the centro-affine area, is constructed. In the case $n=2$, and without any assumption on the boundary, it is shown that the entropy is bounded above by $\frac{2}{3-d} \leq 1$, where $d$ is the Minkowski dimension of the extremal set of $K$. An example of a plane Hilbert geometry with entropy strictly between 0 and 1 is constructed.
Comment: 27 pages; minor changes
Databáze: arXiv