Autor: |
Vedeneev, S. I., Maude, D. K. |
Rok vydání: |
2008 |
Předmět: |
|
Zdroj: |
Phys. Rev. B 77, 064511 (2008) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1103/PhysRevB.77.064511 |
Popis: |
We have investigated the in-plane $I(V)$ characteristics and the Josephson vortex flow resistance in high-quality La-free Bi$_{2+x}$Sr$_{2-x}$CuO$_{6+\delta}$ (Bi2201) single crystals in parallel and tilted magnetic fields at temperatures down to 40 mK. For parallel magnetic fields below the resistive upper critical field $H^{*}_{c2}$, the $I(V)$ characteristic obey a power-law with a smooth change with increasing magnetic-field of the exponent from above 5 down to 1. In contrast to the double-layer cuprate Bi2212, the observed smooth change suggests that there is no change in the mechanism of dissipation (no Kosterlitz-Thouless transition) over the range of temperatures investigated. At small angles between the applied field and the $ab$-plane, prominent current steps in the $I(V)$ characteristics and periodic oscillations of Josephson-vortex flow resistance are observed. While the current steps are periodic in the voltage at constant fields, the voltage position of the steps, together with the flux-flow voltage, increases nonlinearly with magnetic field. The $ab$-flow resistance oscillates as a function of field with a constant period over a wide range of magnetic fields and temperatures. The current steps in the $I(V)$ characteristics and the flow resistance oscillations can be linked to the motion of Josephson vortices across layers. |
Databáze: |
arXiv |
Externí odkaz: |
|