Physical Characteristics of a Dark Cloud in an Early Stage of Star Formation toward NGC 7538: an Outer Galaxy Infrared Dark Cloud?

Autor: Frieswijk, Wilfred W. F., Spaans, Marco, Shipman, Russell F., Teyssier, David, Hily-Blant, Pierre
Rok vydání: 2007
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1051/0004-6361:20077148
Popis: In the inner parts of the Galaxy the Infrared Dark Clouds (IRDCs) are presently believed to be the progenitors of massive stars and star clusters. Many of them are predominantly devoid of active star formation and for now they represent the earliest observed stages of massive star formation. Their Outer Galaxy counterparts, if present, are not easily identified because of a low or absent mid-IR background. We characterize the ambient conditions in the Outer Galaxy IRDC candidate G111.80+0.58, a relatively quiescent molecular core complex in the vicinity of NGC7538. We conduct molecular line observations on a number of dense cores and analyze the data in terms of excitation temperature, column and volume density, mass and stability. The temperatures (15-20K) are higher than expected from only cosmic ray heating, but comparable to those found in massive cores. Star forming activity could be present in some cores, as indicated by the presence of warm gas and YSO candidates. The observed super-thermal line-widths are typical for star forming regions. The velocity dispersion is consistent with a turbulent energy cascade over the observed size scales. We do not find a correlation between the gas temperature and the line-width. The LTE masses we find are much larger than the thermal Jeans mass and fragmentation is expected. In that case the observed lines represent the combined emission of multiple unresolved components. We conclude that G111.80+0.58 is a molecular core complex with bulk properties very similar to IRDCs in an early, but not pristine, star forming state. The individual cores are close to virial equilibrium and some contain sufficient material to form massive stars and star clusters. The ambient conditions suggest that turbulence is involved in supporting the cores against gravitational collapse.
Comment: Accepted for publication in A&A -- 19 pages, 9 figures -- high resolution available at http://www.astro.rug.nl/~frieswyk/Data/Research/OGIRDC/index.html
Databáze: arXiv