Mechanics and physics of a glass/particles photonic sponge

Autor: M. Dubernet, E. Bruyer, Y. Gueguen, P. Houizot, J. C. Hameline, X. Rocquefelte, T. Rouxel
Přispěvatelé: Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Scientific Reports
Scientific Reports, 2020, 10 (1), pp.19495. ⟨10.1038/s41598-020-75504-9⟩
Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.19495. ⟨10.1038/s41598-020-75504-9⟩
Scientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
ISSN: 2045-2322
Popis: International audience; A glass containing mechanoluminescent crystalline particles behaves as a photonic sponge: that is to say it fills up with trapped electrons when exposed to UV light, and it emits light when submitted to a mechanical loading, similar to a sponge soaked with water that is wringed under mechanical action! A major finding of the present study is that the elasto-mechanoluminescence effect showing up on unloading is governed by the deviatoric part of the applied stress (no effect under hydrostatic pressure). Furthermore, the structural source for this phenomenon was elucidated by a detailed density functional theory analysis of the e(-) energetics at the possible oxygen vacancy sites within the crystalline phase. Both the e(-) trapping and detrapping processes under load could be explained. An analogy with hydraulic circuits and the rheology of viscoelastic media was successfully introduced to pave the way to a constitutive law for the mechano-optical coupling phenomenon.
Databáze: OpenAIRE