Bayesian Networks to Support Decision-Making for Immune-Checkpoint Blockade in Recurrent/Metastatic (R/M) Head and Neck Squamous Cell Carcinoma (HNSCC)
Autor: | Marius Huehn, Jan Gaebel, Alexander Oeser, Andreas Dietz, Thomas Neumuth, Gunnar Wichmann, Matthaeus Stoehr |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
head and neck squamous cell carcinoma (HNSCC)
immunotherapy immune checkpoint blockade (ICB) targeted therapy Bayesian network molecular tumor board Neoplasms. Tumors. Oncology. Including cancer and carcinogens ddc:610 RC254-282 Article multidisciplinary tumor board clinical decision support system (CDSS) |
Zdroj: | Cancers Cancers, Vol 13, Iss 5890, p 5890 (2021) |
ISSN: | 2072-6694 |
Popis: | Simple Summary Tumor therapy in many human malignancies, including head and neck cancer, is increasingly demanding due to advances in diagnostics and individualized treatments. Multidisciplinary tumor boards, especially molecular tumor boards, consider a great amount of information to find the optimal treatment decision. Clinical decision support systems can help in optimizing this complex decision-making process. We designed a digital patient model based on conditional probability algorithms as Bayesian networks to support the decision-making process regarding treatment with approved immunotherapeutic agents (Nivolumab and Pembrolizumab). The model is able to process relevant clinical information to recommend a certain immunotherapeutic agent based on literature, approval, and guidelines. Abstract New diagnostic methods and novel therapeutic agents spawn additional and heterogeneous information, leading to an increasingly complex decision-making process for optimal treatment of cancer. A great amount of information is collected in organ-specific multidisciplinary tumor boards (MDTBs). By considering the patient’s tumor properties, molecular pathological test results, and comorbidities, the MDTB has to consent an evidence-based treatment decision. Immunotherapies are increasingly important in today’s cancer treatment, resulting in detailed information that influences the decision-making process. Clinical decision support systems can facilitate a better understanding via processing of multiple datasets of oncological cases and molecular genetic information, potentially fostering transparency and comprehensibility of available information, eventually leading to an optimum treatment decision for the individual patient. We constructed a digital patient model based on Bayesian networks to combine the relevant patient-specific and molecular data with depended probabilities derived from pertinent studies and clinical guidelines to calculate treatment decisions in head and neck squamous cell carcinoma (HNSCC). In a validation analysis, the model can provide guidance within the growing subject of immunotherapy in HNSCC and, based on its ability to calculate reliable probabilities, facilitates estimation of suitable therapy options. We compared actual treatment decisions of 25 patients with the calculated recommendations of our model and found significant concordance (Cohen’s κ = 0.505, p = 0.009) and 84% accuracy. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |