Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats
Autor: | Chung, KF, Seiffert, J, Chen, S, Theodorou, IG, Goode, AE, Leo, BF, McGilvery, CM, Hussain, F, Wiegman, C, Rossios, C, Zhu, J, Gong, J, Tariq, F, Yufit, V, Monteith, AJ, Hashimoto, T, Skepper, JN, Ryan, MP, Zhang, J, Tetley, TD, Porter, AE |
---|---|
Přispěvatelé: | Natural Environment Research Council (NERC), Commission of the European Communities |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Technology
bronchial hyperresponsiveness Silver surfactant protein D Chemistry Multidisciplinary Materials Science Materials Science Multidisciplinary INHALATION Physics and Astronomy(all) CARBON NANOTUBES alveolar epithelial cells Article Rats Sprague-Dawley INFLAMMATION Materials Science(all) NANOPARTICLES SULFIDATION Animals EXPOSURE Nanoscience & Nanotechnology Lung IN-VIVO Engineering(all) Science & Technology Chemistry Physical Nanowires MICROSCOPY respiratory system silver nanowires PARTICLE-SIZE TRANSPARENT Rats macrophages respiratory tract diseases Chemistry Instillation Drug Physical Sciences Science & Technology - Other Topics silver sulfidation |
Zdroj: | ACS Nano Chung, K F, Seiffert, J, Chen, S, Theodorou, I G, Goode, A E, Leo, B F, McGilvery, C M, Hussain, F, Wiegman, C, Rossios, C, Zhu, J, Gong, J, Tariq, F, Yufit, V, Monteith, A J, Hashimoto, T, Skepper, J N, Ryan, M P, Zhang, J, Tetley, T D & Porter, A E 2017, ' Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats ', ACS Nano, vol. 11, no. 3, pp. 2652-2664 . https://doi.org/10.1021/acsnano.6b07313 |
Popis: | There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague-Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health. |
Databáze: | OpenAIRE |
Externí odkaz: |