Long-Term Effects of Gestational Nicotine Exposure and Food-Restriction on Gene Expression in the Striatum of Adolescent Rats
Autor: | Ilott, Nicholas E., Schneider, Tomasz, Mill, Jonathan, Schalkwyk, L., Brolose, Giovana, Araujo, Lisiane Bizarro, Stolerman, I. P., Dempster, Emma, Asherson, Philip |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Epigenomics
Male Nicotine Pulmonology Nicotina Science Gene Expression Expressão gênica Molecular Genetics Behavioral Neuroscience Model Organisms Pregnancy Stress Physiological Molecular Cell Biology Genetics Animals Biology Ratos Caloric Restriction Age Factors Computational Biology Smoking Related Disorders Gene Expression Regulation Developmental Genomics Animal Models Microarray Analysis Corpus Striatum Rats Prenatal Exposure Delayed Effects Gravidez Rat Medicine Epigenetics Female Genome Expression Analysis Transcriptome Metabolic Networks and Pathways Research Article Neuroscience |
Zdroj: | PLoS ONE PLoS ONE, Vol 9, Iss 2, p e88896 (2014) Repositório Institucional da UFRGS Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
ISSN: | 1932-6203 |
Popis: | Gestational exposure to environmental toxins such as nicotine may result in detectable gene expression changes in later life. To investigate the direct toxic effects of prenatal nicotine exposure on later brain development, we have used transcriptomic analysis of striatal samples to identify gene expression differences between adolescent Lister Hooded rats exposed to nicotine in utero and controls. Using an additional group of animals matched for the reduced food intake experienced in the nicotine group, we were also able to assess the impact of imposed food-restriction on gene expression profiles. We found little evidence for a role of gestational nicotine exposure on altered gene expression in the striatum of adolescent offspring at a significance level of p,0.01 and |log2 fold change .0.5|, although we cannot exclude the possibility of nicotine-induced changes in other brain regions, or at other time points. We did, however, find marked gene expression differences in response to imposed food-restriction. Food-restriction resulted in significant group differences for a number of immediate early genes (IEGs) including Fos, Fosb, Fosl2, Arc, Junb, Nr4a1 and Nr4a3. These genes are associated with stress response pathways and therefore may reflect long-term effects of nutritional deprivation on the development of the stress system. |
Databáze: | OpenAIRE |
Externí odkaz: |