Popis: |
The integrin beta 1 (CD29) is a marker for total very late activation Ag integrins on cells, and exhibits considerable fluctuation in cell surface density at various stages of T cell development. We have analyzed beta 1 integrin expression on subsets of human thymus, and on T cells from healthy babies and children, in comparison to healthy adults aged 26 to 75. T cells from adult peripheral blood include a CD29-, a CD29lo, and a CD29hi set. Compared with adults, PBMC T cells from children have reduced numbers of both CD29lo and CD29hi subsets but equivalent numbers of CD29- T cells. The number of CD29hi T cells increases gradually with age, achieving adult levels only at about 26 yr of age; in aged adults (69 to 75 yr), nearly all T cells have a CD29hi phenotype. Most thymocytes and cord blood T cells, in contrast, have a single peak of CD29 staining that is intermediate to the two peaks seen in adults. Multi-negative progenitor and CD45RO- thymocytes (presumptive thymic generative line-age) are 98% CD29hi. Progenitor thymocytes and adult PBMC T cells express equivalent amounts of beta 1 and alpha 4, but progenitors are alpha 5hi, whereas PBMC T cells are alpha 5lo. T cells from children have reduced beta 1hi and alpha 5lo, but nearly comparable numbers of alpha 4hi. This suggests that the major very late activation Ag integrins during childhood may be alpha 5 beta 1 and alpha 4 complexed with an alternate beta chain. In children, the majority of CD29hi cells are also CD45RAhi, in contrast to the pattern in adults, in whom the majority of CD29hi T cells are CD45RA-. This suggests that in children, the main defense against infection may reside in the CD29hi45RAhi T cells, which have not yet made the transition to CD45RO and to bona fide memory status. The proliferative response to tetanus toxoid of 4- to 6-mo-old babies correlates with the number of CD29hi45RAhi T cells, suggesting that it derives at least in part from cells that do not express a "memory" phenotype. These observations show a pattern of alternating high and low density CD29 during T cell development, which is consistent with the idea that CD29 is a marker for functionally defined T cell sets. Analysis of the CD29 expression of CD29hi thymocytes developing in vitro supports this view. We suggest that the intensity of CD29 expression on a T cell varies, dependent upon the microenvironmental interactions required by a differentiating T cell. |