Fully automated analysis combining [
Autor: | K J, Paprottka, S, Kleiner, C, Preibisch, F, Kofler, F, Schmidt-Graf, C, Delbridge, D, Bernhardt, S E, Combs, J, Gempt, B, Meyer, C, Zimmer, B H, Menze, I, Yakushev, J S, Kirschke, B, Wiestler |
---|---|
Rok vydání: | 2021 |
Předmět: |
Brain Neoplasms
Multiparametric MRI Kirschke B. coshared last Glioma APTw Amides Magnetic Resonance Imaging [18F]-FET-PET Glioma progression Perfusion J. S. and Wiestler Positron-Emission Tomography Humans Tyrosine Original Article Multiparametric Magnetic Resonance Imaging Protons Fully automated DSC perfusion Retrospective Studies |
Zdroj: | European Journal of Nuclear Medicine and Molecular Imaging |
ISSN: | 1619-7089 |
Popis: | Purpose To evaluate diagnostic accuracy of fully automated analysis of multimodal imaging data using [18F]-FET-PET and MRI (including amide proton transfer-weighted (APTw) imaging and dynamic-susceptibility-contrast (DSC) perfusion) in differentiation of tumor progression from treatment-related changes in patients with glioma. Material and methods At suspected tumor progression, MRI and [18F]-FET-PET data as part of a retrospective analysis of an observational cohort of 66 patients/74 scans (51 glioblastoma and 23 lower-grade-glioma, 8 patients included at two different time points) were automatically segmented into necrosis, FLAIR-hyperintense, and contrast-enhancing areas using an ensemble of deep learning algorithms. In parallel, previous MR exam was processed in a similar way to subtract preexisting tumor areas and focus on progressive tumor only. Within these progressive areas, intensity statistics were automatically extracted from [18F]-FET-PET, APTw, and DSC-derived cerebral-blood-volume (CBV) maps and used to train a Random Forest classifier with threefold cross-validation. To evaluate contribution of the imaging modalities to the classifier’s performance, impurity-based importance measures were collected. Classifier performance was compared with radiology reports and interdisciplinary tumor board assessments. Results In 57/74 cases (77%), tumor progression was confirmed histopathologically (39 cases) or via follow-up imaging (18 cases), while remaining 17 cases were diagnosed as treatment-related changes. The classification accuracy of the Random Forest classifier was 0.86, 95% CI 0.77–0.93 (sensitivity 0.91, 95% CI 0.81–0.97; specificity 0.71, 95% CI 0.44–0.9), significantly above the no-information rate of 0.77 (p = 0.03), and higher compared to an accuracy of 0.82 for MRI (95% CI 0.72–0.9), 0.81 for [18F]-FET-PET (95% CI 0.7–0.89), and 0.81 for expert consensus (95% CI 0.7–0.89), although these differences were not statistically significant (p > 0.1 for all comparisons, McNemar test). [18F]-FET-PET hot-spot volume was single-most important variable, with relevant contribution from all imaging modalities. Conclusion Automated, joint image analysis of [18F]-FET-PET and advanced MR imaging techniques APTw and DSC perfusion is a promising tool for objective response assessment in gliomas. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05427-8. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |