Popis: |
Induced pluripotent stem cells (iPSC) are a widely used cell system and a foundation for cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which have the potential to affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing – a process linked to both genome regulation and genome stability – is efficiently reprogrammed to the embryonic state. To answer this, we profiled and compared genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicated their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibit delayed replication at heterochromatic regions containing genes downregulated in iPSC with incompletely reprogrammed DNA methylation. DNA replication delays were not the result of gene expression and DNA methylation aberrations and persisted after differentiating cells to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and lead to undesirable phenotypes in iPSCs, establishing it as an important genomic feature to consider when evaluating iPSC lines. |